Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 204
1.
Appl Environ Microbiol ; 90(4): e0014624, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38557120

The metal-resistant bacterium Cupriavidus metallidurans occurs in metal-rich environments. In auriferous soils, the bacterium is challenged by a mixture of copper ions and gold complexes, which exert synergistic toxicity. The previously used, self-made Au(III) solution caused a synergistic toxicity of copper and gold that was based on the inhibition of the CupA-mediated efflux of cytoplasmic Cu(I) by Au(I) in this cellular compartment. In this publication, the response of the bacterium to gold and copper was investigated by using a commercially available Au(III) solution instead of the self-made solution. The new solution was five times more toxic than the previously used one. Increased toxicity was accompanied by greater accumulation of gold atoms by the cells. The contribution of copper resistance determinants to the commercially available Au(III) solution and synergistic gold-copper toxicity was studied using single- and multiple-deletion mutants. The commercially available Au(III) solution inhibited periplasmic Cu(I) homeostasis, which is required for the allocation of copper ions to copper-dependent proteins in this compartment. The presence of the gene for the periplasmic Cu(I) and Au(I) oxidase, CopA, decreased the cellular copper and gold content. Transcriptional reporter gene fusions showed that up-regulation of gig, encoding a minor contributor to copper resistance, was strictly glutathione dependent. Glutathione was also required to resist synergistic gold-copper toxicity. The new data indicated a second layer of synergistic copper-gold toxicity caused by the commercial Au(III) solution, inhibition of the periplasmic copper homeostasis in addition to the cytoplasmic one.IMPORTANCEWhen living in auriferous soils, Cupriavidus metallidurans is not only confronted with synergistic toxicity of copper ions and gold complexes but also by different gold species. A previously used gold solution made by using aqua regia resulted in the formation of periplasmic gold nanoparticles, and the cells were protected against gold toxicity by the periplasmic Cu(I) and Au(I) oxidase CopA. To understand the role of different gold species in the environment, another Au(III) solution was commercially acquired. This compound was more toxic due to a higher accumulation of gold atoms by the cells and inhibition of periplasmic Cu(I) homeostasis. Thus, the geo-biochemical conditions might influence Au(III) speciation. The resulting Au(III) species may subsequently interact in different ways with C. metallidurans and its copper homeostasis system in the cytoplasm and periplasm. This study reveals that the geochemical conditions may decide whether bacteria are able to form gold nanoparticles or not.


Cupriavidus , Metal Nanoparticles , Copper/metabolism , Gold/toxicity , Gold/metabolism , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Cupriavidus/genetics , Cupriavidus/metabolism , Bacterial Proteins/metabolism , Ions/metabolism , Soil , Glutathione/metabolism , Oxidoreductases/metabolism
2.
J Bacteriol ; 206(2): e0039523, 2024 02 22.
Article En | MEDLINE | ID: mdl-38226602

In Cupriavidus metallidurans and other bacteria, biosynthesis of the essential biochemical cofactor tetrahydrofolate (THF) initiates from guanosine triphosphate (GTP). This step is catalyzed by FolE_I-type GTP cyclohydrolases, which are either zinc-dependent FolE_IA-type or metal-promiscuous FolE_IB-type enzymes. As THF is also essential for GTP biosynthesis, GTP and THF synthesis form a cooperative cycle, which may be influenced by the cellular homeostasis of zinc and other metal cations. Metal-resistant C. metallidurans harbors one FolE_IA-type and two FolE_IB-type enzymes. All three proteins were produced in Escherichia coli. FolE_IA was indeed zinc dependent and the two FolE_IB enzymes metal-promiscuous GTP cyclohydrolases in vitro, the latter, for example, functioning with iron, manganese, or cobalt. Single and double mutants of C. metallidurans with deletions in the folE_I genes were constructed to analyze the contribution of the individual FolE_I-type enzymes under various conditions. FolE_IA was required in the presence of cadmium, hydrogen peroxide, metal chelators, and under general metal starvation conditions. FolE_IB1 was important when zinc uptake was impaired in cells without the zinc importer ZupT (ZIP family) and in the presence of trimethoprim, an inhibitor of THF biosynthesis. FolE_IB2 was needed under conditions of low zinc and cobalt but high magnesium availability. Together, these data demonstrate that C. metallidurans requires all three enzymes to allow efficient growth under a variety of conditions.IMPORTANCETetrahydrofolate (THF) is an important cofactor in microbial biochemistry. This "Achilles heel" of metabolism has been exploited by anti-metabolites and antibiotics such as sulfonamide and trimethoprim. Since THF is essential for the synthesis of guanosine triphosphate (GTP) and THF biosynthesis starts from GTP, synthesis of both compounds forms a cooperative cycle. The first step of THF synthesis by GTP cyclohydrolases (FolEs) is metal dependent and catalyzed by zinc- or metal-promiscuous enzymes, so that the cooperative THF and GTP synthesis cycle may be influenced by the homeostasis of several metal cations, especially that of zinc. The metal-resistant bacterium C. metallidurans needs three FolEs to grow in environments with both high and low zinc and cadmium content. Consequently, bacterial metal homeostasis is required to guarantee THF biosynthesis.


Cadmium , Cupriavidus , Cadmium/metabolism , Guanosine Triphosphate/metabolism , Metals/metabolism , Zinc/metabolism , Cupriavidus/genetics , Cupriavidus/metabolism , Cobalt/metabolism , Trimethoprim , Cations/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
3.
J Hazard Mater ; 465: 133403, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38215523

Aluminium (Al) is one of the most popular materials for industrial and domestic use. Nevertheless, research has proven that this metal can be toxic to most organisms. This light metal has no known biological function and to date very few aluminium-specific biological pathways have been identified. In addition, information about the impact of this metal on microbial life is scarce. Here, we aimed to study the effect of aluminium on the metal-resistant soil bacterium Cupriavidus metallidurans CH34 in different growth modes, i.e. planktonic cells, adhered cells and mature biofilms. Our results indicated that despite a significant tolerance to aluminium (minimal inhibitory concentration of 6.25 mM Al2(SO4)3.18H2O), the exposure of C. metallidurans to a sub-inhibitory dose (0.78 mM) caused early oxidative stress and an increase in hydrolytic activity. Changes in the outer membrane surface of planktonic cells were observed, in addition to a rapid disruption of mature biofilms. On protein level, aluminium exposure increased the expression of proteins involved in metabolic activity such as pyruvate kinase, formate dehydrogenase and poly(3-hydroxybutyrate) polymerase, whereas proteins involved in chemotaxis, and the production and transport of iron scavenging siderophores were significantly downregulated.


Aluminum , Cupriavidus , Proteomics , Metals/metabolism , Cupriavidus/metabolism , Bacterial Proteins/metabolism
4.
Bioresour Technol ; 393: 130133, 2024 Feb.
Article En | MEDLINE | ID: mdl-38043689

Heavy metal-resistant bacteria secrete extracellular proteins (e-PNs). However, the role of e-PNs in heavy metal resistance remains elusive. Here Fourier Transform Infrared Spectroscopy implied that N-H, C = O and NH2-R played a crucial role in the adsorption and resistance of Ni2+ in the model organism Cuprividus pauculus 1490 (C. pauculus). Proteinase K treatment reduced Ni2+ resistance of C. pauculus underlining the essential role of e-PNs. Further three-dimension excitation-emission matrix fluorescence spectroscopy analysis demonstrated that tryptophan proteins as part of the e-PNs increased significantly with Ni2+ treatment. Proteomic and quantitative real-time polymerase chain reaction data indicated that major changes were induced in the metabolism of C. pauculus in response to Ni2+. Among those lipopolysaccharide biosynthesis, general secretion pathways, Ni2+-affiliated transporters and multidrug efflux play an essential role in Ni2+ resistance. Altogether the results provide a conceptual model for comprehending how e-PNs contribute to bacterial resistance and adsorption of Ni2+.


Cupriavidus , Metals, Heavy , Nickel , Proteomics , Metals, Heavy/metabolism , Cupriavidus/metabolism
5.
Environ Pollut ; 342: 123040, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38016587

Cadmium (Cd) pollution is one of the most severe toxic metals pollution in grassland. Vicia unijuga (V. unijuga) A.Br. planted nearby the grassland farming are facing the risk of high Cd contamination. Here, we investigated the beneficial effects of a highly Cd tolerant rhizosphere bacterium, Cupriavidus sp. WS2, on Cd contaminated V. unijuga. Through plot experiments, we set up four groups of treatments: the control group (without WS2 or Cd), the Cd group (with only Cd addition), the WS2 group (with only WS2 addition), and the WS2/Cd group (with WS2 and Cd addition), and analyzed the changes in physiological indicators, rhizosphere microorganisms, and stem and leaf metabolites of V. unijuga. Results of physiological indicators indicated that Cupriavidus sp. WS2 had strong absorption and accumulation capacity of Cd, exogenous addition of strain WS2 remarkably decreased the Cd concentrations, and increased the plant heights, the biomass, the total protein concentrations, the chlorophyll contents and the photosynthetic rate in stems and leaves of V. unijuga under Cd stress. Cd treatment increased the abundance of Cd tolerant bacterial genera in rhizosphere microbiome, but these genera were down-regulated in the WS2/Cd group. Pseudotargeted metabolomic results showed that six common differential metabolites associated with antioxidant stress were increased after co-culture with WS2. In addition, WS2 activated the antioxidant system including glutathione (GSH) and catalase (CAT), reduced the contents of oxidative stress markers including malondialdehyde (MDA) and hydrogen peroxide (H2O2) in V. unijuga under Cd stress. Taken together, this study revealed that Cupriavidus sp.WS2 alleviated the toxicity of V. unijuga under Cd exposure by activating the antioxidant system, increasing the antioxidant metabolites, and reducing the oxidative stress markers.


Cupriavidus , Vicia , Antioxidants/metabolism , Cadmium/metabolism , Vicia/metabolism , Hydrogen Peroxide/metabolism , Cupriavidus/metabolism , Glutathione/metabolism , Oxidative Stress , Plant Leaves , Plant Roots/metabolism
6.
Int J Biol Macromol ; 253(Pt 8): 127439, 2023 Dec 31.
Article En | MEDLINE | ID: mdl-37848111

Cupriavidus sp. L7L synthesizes a high content of ductile polyhydroxyalkanoate. However, during fermentation, the medium's viscosity gradually increases, eventually reaching a level similar to 93 % glycerol, leading to fermentation termination and difficulties in cell harvest. A non-mucoid variant was isolated from a mini-Tn5 mutant library with the transposon inserted at the promoter sequence upstream of the wcaJ gene. Deletion of wcaJ eliminated the mucoid-colony appearance. The complementation experiment confirmed the association between wcaJ gene expression and mucoid-colony formation. Additionally, the wild-type strain exhibited a faster specific growth rate than the deletion strain using levulinate (Lev) as a carbon source. In fed-batch fermentation, Cupriavidus sp. L7L∆wcaJ showed similar PHA content and monomer composition to the wild-type strain. However, the extended fermentation time resulted in a 42 % increase in PHA concentration. After fed-batch fermentation, the deletion strain's medium had only 8.75 % of the wild-type strain's extracellular polymeric substance content. Moreover, the deletion strain's medium had a much lower viscosity (1.04 mPa·s) than the wild-type strain (194.7 mPa·s), making bacterial cell collection easier through centrifugation. In summary, Cupriavidus sp. L7L∆wcaJ effectively addressed difficulties in cell harvest, increased PHA production, and Lev-to-PHA conversion efficiency, making these characteristics advantageous for industrial-scale PHA production.


Cupriavidus necator , Cupriavidus , Polyhydroxyalkanoates , Cupriavidus/genetics , Cupriavidus/metabolism , Extracellular Polymeric Substance Matrix/metabolism , Gene Deletion , Fermentation , Cupriavidus necator/metabolism
7.
J Microbiol Biotechnol ; 33(7): 875-885, 2023 07 28.
Article En | MEDLINE | ID: mdl-37100759

Volatile organic compounds such as benzene, toluene, ethylbenzene, and isomers of xylenes (BTEX) constitute a group of monoaromatic compounds that are found in petroleum and have been classified as priority pollutants. In this study, based on its newly sequenced genome, we reclassified the previously identified BTEX-degrading thermotolerant strain Ralstonia sp. PHS1 as Cupriavidus cauae PHS1. Also presented are the complete genome sequence of C. cauae PHS1, its annotation, species delineation, and a comparative analysis of the BTEX-degrading gene cluster. Moreover, we cloned and characterized the BTEX-degrading pathway genes in C. cauae PHS1, the BTEX-degrading gene cluster of which consists of two monooxygenases and meta-cleavage genes. A genome-wide investigation of the PHS1 coding sequence and the experimentally confirmed regioselectivity of the toluene monooxygenases and catechol 2,3-dioxygenase allowed us to reconstruct the BTEX degradation pathway. The degradation of BTEX begins with aromatic ring hydroxylation, followed by ring cleavage, and eventually enters the core carbon metabolism. The information provided here on the genome and BTEX-degrading pathway of the thermotolerant strain C. cauae PHS1 could be useful in constructing an efficient production host.


Benzene , Cupriavidus , Benzene/metabolism , Toluene , Xylenes/metabolism , Cupriavidus/genetics , Cupriavidus/metabolism , Biodegradation, Environmental , Benzene Derivatives/metabolism , Genomics
8.
Microb Cell Fact ; 22(1): 68, 2023 Apr 12.
Article En | MEDLINE | ID: mdl-37046250

BACKGROUND: This study aimed to isolate a novel thermotolerant bacterium that is capable of synthesizing polyhydroxyalkanoate from glycerol under high temperature conditions. RESULTS: A newly thermotolerant polyhydroxyalkanoate (PHA) producing bacterium, Cupriavidus sp. strain CB15, was isolated from corncob compost. The potential ability to synthesize PHA was confirmed by detection of PHA synthase (phaC) gene in the genome. This strain could produce poly(3-hydroxybutyrate) [P(3HB)] with 0.95 g/L (PHA content 75.3 wt% of dry cell weight 1.24 g/L) using glycerol as a carbon source. The concentration of PHA was enhanced and optimized based on one-factor-at-a-time (OFAT) experiments and response surface methodology (RSM). The optimum conditions for growth and PHA biosynthesis were 10 g/L glycerol, 0.78 g/L NH4Cl, shaking speed at 175 rpm, temperature at 45 °C, and cultivation time at 72 h. Under the optimized conditions, PHA production was enhanced to 2.09 g/L (PHA content of 74.4 wt% and dry cell weight of 2.81 g/L), which is 2.12-fold compared with non-optimized conditions. Nuclear magnetic resonance (NMR) analysis confirmed that the extracted PHA was a homopolyester of 3-hydyoxybutyrate. CONCLUSION: Cupriavidus sp. strain CB15 exhibited potential for cost-effective production of PHA from glycerol.


Composting , Cupriavidus necator , Cupriavidus , Polyhydroxyalkanoates , Cupriavidus/genetics , Cupriavidus/metabolism , Glycerol/metabolism , Temperature , Cupriavidus necator/genetics , Cupriavidus necator/metabolism
9.
Int J Mol Sci ; 24(6)2023 Mar 22.
Article En | MEDLINE | ID: mdl-36983076

Cupriavidus nantongensis X1T is a type strain of the genus Cupriavidus, that can degrade eight kinds of organophosphorus insecticides (OPs). Conventional genetic manipulations in Cupriavidus species are time-consuming, difficult, and hard to control. The clustered regularly interspaced short palindromic repeat (CRISPR)/associated protein 9 (Cas9) system has emerged as a powerful tool for genome editing applied in prokaryotes and eukaryotes due to its simplicity, efficiency, and accuracy. Here, we combined CRISPR/Cas9 with the Red system to perform seamless genetic manipulation in the X1T strain. Two plasmids, pACasN and pDCRH were constructed. The pACasN plasmid contained Cas9 nuclease and Red recombinase, and the pDCRH plasmid contained the dual single-guide RNA (sgRNA) of organophosphorus hydrolase (OpdB) in the X1T strain. For gene editing, two plasmids were transferred to the X1T strain and a mutant strain in which genetic recombination had taken place, resulting in the targeted deletion of opdB. The incidence of homologous recombination was over 30%. Biodegradation experiments suggested that the opdB gene was responsible for the catabolism of organophosphorus insecticides. This study was the first to use the CRISPR/Cas9 system for gene targeting in the genus Cupriavidus, and it furthered our understanding of the process of degradation of organophosphorus insecticides in the X1T strain.


Cupriavidus , Insecticides , Insecticides/metabolism , CRISPR-Cas Systems/genetics , Organophosphorus Compounds/metabolism , Cupriavidus/genetics , Cupriavidus/metabolism , Gene Editing/methods
10.
J Bacteriol ; 205(4): e0034322, 2023 04 25.
Article En | MEDLINE | ID: mdl-36892288

Metal resistance of Cupriavidus metallidurans is based on determinants that were acquired in the past by horizontal gene transfer during evolution. Some of these determinants encode transmembrane metal efflux systems. Expression of most of the respective genes is controlled by two-component regulatory systems composed of a membrane-bound sensor/sensory histidine kinase (HK) and a cytoplasmic, DNA-binding response regulator (RR). Here, we investigated the interplay between the three closely related two-component regulatory systems CzcRS, CzcR2S2, and AgrRS. All three systems regulate the response regulator CzcR, while the RRs AgrR and CzcR2 were not involved in czc regulation. Target promoters were czcNp and czcPp for genes upstream and downstream of the central czc gene region. The two systems together repressed CzcRS-dependent upregulation of czcP-lacZ at low zinc concentrations in the presence of CzcS but activated this signal transmission at higher zinc concentrations. AgrRS and CzcR2S2 interacted to quench CzcRS-mediated expression of czcNp-lacZ and czcPp-lacZ. Together, cross talk between the three two-component regulatory systems enhanced the capabilities of the Czc systems by controlling expression of the additional genes czcN and czcP. IMPORTANCE Bacteria are able to acquire genes encoding resistance to metals and antibiotics by horizontal gene transfer. To bestow an evolutionary advantage on their host cell, new genes must be expressed, and their expression should be regulated so that resistance-mediating proteins are produced only when needed. Newly acquired regulators may interfere with those already present in a host cell. Such an event was studied here in the metal-resistant bacterium Cupriavidus metallidurans. The results demonstrate how regulation by the acquired genes interacts with the host's extant regulatory network. This leads to emergence of a new system level of complexity that optimizes the response of the cell to periplasmic signals.


Bacterial Proteins , Cupriavidus , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Metals/metabolism , Zinc/metabolism , Cupriavidus/genetics , Cupriavidus/metabolism
11.
Bioresour Technol ; 371: 128627, 2023 Mar.
Article En | MEDLINE | ID: mdl-36646360

Thermophilic production of polyhydroxyalkanoate is considered a very promising way to overcome the problems that may arise when using mesophilic strains. This study reports the first thermophilic polyhydroxybutyrate-producing Cupriavidus species, which are known as the best polyhydroxybutyrate-producing microorganisms. Cupriavidus cauae PHS1 harbors a phbCABR cluster with high similarity to the corresponding proteins of C. necator H16 (80, 93, 96, and 97 %). This strain can produce polyhydroxybutyrate from a range of substrates, including acetate (5 g/L) and phenol (1 g/L), yielding 7.6 % and 18.9 % polyhydroxybutyrate, respectively. Moreover, the strain produced polyhydroxybutyrate at temperatures ranging from 25 to 50 °C, with the highest polyhydroxybutyrate content (47 °C) observed at 45 °C from gluconate. Additionally, the strain could incorporate 3-hydroxyvalerate (12.5 mol. %) into the polyhydroxybutyrate polymer using levulinic acid as a precursor. Thus, Cupriavidus cauae PHS1 may be a promising polyhydroxybutyrate producer as alternative for mesophilic polyhydroxybutyrate-producing Cupriavidus species.


Cupriavidus necator , Cupriavidus , Polyhydroxyalkanoates , Cupriavidus/metabolism , Polyhydroxyalkanoates/metabolism , Cupriavidus necator/metabolism
12.
ACS Synth Biol ; 11(11): 3617-3628, 2022 11 18.
Article En | MEDLINE | ID: mdl-36278822

Cupriavidus metallidurans CH34 exhibits extraordinary metabolic versatility, including chemolithoautotrophic growth; degradation of BTEX (benzene, toluene, ethylbenzene, xylene); high resistance to numerous metals; biomineralization of gold, platinum, silver, and uranium; and accumulation of polyhydroxybutyrate (PHB). These qualities make it a valuable host for biotechnological applications such as bioremediation, bioprocessing, and the generation of bioelectricity in microbial fuel cells (MFCs). However, the lack of genetic tools for strain development and studying its fundamental physiology represents a bottleneck to boosting its commercial applications. In this study, inducible and constitutive promoter libraries were built and characterized, providing the first comprehensive list of biological parts that can be used to regulate protein expression and optimize the CRISPR-Cas9 genome editing tools for this host. A single-plasmid CRISPR-Cas9 system that can be delivered by both conjugation and electroporation was developed, and its efficiency was demonstrated by successfully targeting the pyrE locus. The CRISPR-Cas9 system was next used to target candidate genes encoding type IV pili, hypothesized by us to be involved in extracellular electron transfer (EET) in this organism. Single and double deletion strains (ΔpilA, ΔpilE, and ΔpilAE) were successfully generated. Additionally, the CRISPR-Cas9 tool was validated for constructing genomic insertions (ΔpilAE::gfp and ΔpilAE::λPrgfp). Finally, as type IV pili are believed to play an important role in extracellular electron transfer to solid surfaces, C. metallidurans CH34 ΔpilAE was further studied by means of cyclic voltammetry using disposable screen-printed carbon electrodes. Under these conditions, we demonstrated that C. metallidurans CH34 could generate extracellular currents; however, no difference in the intensity of the current peaks was found in the ΔpilAE double deletion strain when compared to the wild type. This finding suggests that the deleted type IV pili candidate genes are not involved in extracellular electron transfer under these conditions. Nevertheless, these experiments revealed the presence of different redox centers likely to be involved in both mediated electron transfer (MET) and direct electron transfer (DET), the first interpretation of extracellular electron transfer mechanisms in C. metallidurans CH34.


Cupriavidus , Synthetic Biology , CRISPR-Cas Systems/genetics , Cupriavidus/genetics , Cupriavidus/metabolism , Plasmids/genetics , Metals/metabolism
13.
Bioresour Technol ; 360: 127600, 2022 Sep.
Article En | MEDLINE | ID: mdl-35820558

This study emphasizes on the cellulase production characteristics of strain ZY7 and its collaboration with nitrate-dependent ferrous oxidizing (NFO) strain XL4 to achieve efficient denitrification at low carbon-to-nitrogen (C/N) ratio. Results indicated that the denitrification efficiency increased from 65.47 to 97.99% at 24 h after co-culture at C/N of 1.0. Three-dimensional fluorescence excitation-emission matrix (3D-EEM) showed significant changes in the intensity of soluble microbial products (SMP), fulvic-like materials, and aromatic proteins after co-culture. Bio-precipitates were characterized by Scanning electron microscope (SEM), Fourier transform infrared spectrometer (FTIR), and X-ray diffraction (XRD), which showed that cellulose structure was disrupted and the metabolites were potential carbon source for denitrification. In addition, cellulase activity suggested that the hydrolysis of ß-1,4-glycosidic bonds and oligosaccharides may be the rate-limiting steps in cellulose degradation. This work promoted the understanding of denitrification characteristics of co-culture and expanded the application of cellulose degrading bacteria in sewage treatment.


Cellulase , Cupriavidus , Bioreactors/microbiology , Carbon/chemistry , Cellulase/metabolism , Cellulose , Cupriavidus/metabolism , Denitrification , Nitrates/metabolism , Nitrogen/chemistry
14.
Bioresour Technol ; 361: 127680, 2022 Oct.
Article En | MEDLINE | ID: mdl-35878764

This study employed a novel and environment-friendly biopolymer/oxidant catalytic system, viz., poly(3-hydroxybutyrate)/peroxymonosulfate (PHB/PMS), for pretreating wastewater sludge for the first time. Under optimal conditions, i.e., 3.1 × 10-4 M of PMS and 3.3 g/L of PHB at pH = 6.0, the PAHs in the sludge matrix was decreased by 79 % in 12 h. Increase in salinity (75 % synthetic seawater) achieved 83 % of PAHs degradation. Functional groups (CO) of the biopolymer matrix were active centers for biopolymer-mediated electron transfer that produced reactive oxygen species (SO4-, HO, and 1O2) for adsorption and catalytic oxidation of PAHs in the sludge. Functional metagenomic analysis revealed the main genus, Conexibacter (phylum, Actinobacteria) exhibited PAH-degrading function with high efficiency in the biodegradation of PAHs from sludge pretreated with PHB/PMS. Coupling chemical oxidation and biostimulation using bacterial polymer-based biomaterials is effective and beneficial for pretreating wastewater sludge toward circular bioeconomy.


Cupriavidus , Polycyclic Aromatic Hydrocarbons , 3-Hydroxybutyric Acid , Biopolymers , Catalysis , Cupriavidus/metabolism , Hydroxybutyrates , Metals , Peroxides , Polycyclic Aromatic Hydrocarbons/metabolism , Polyesters , Sewage/microbiology , Wastewater/analysis
15.
World J Microbiol Biotechnol ; 38(6): 108, 2022 May 09.
Article En | MEDLINE | ID: mdl-35532866

Lindane (γ-Hexachlorocyclohexane) has been used extensively as a pesticide all over the world. The production of Lindane entails the formation of four major Hexachlorocyclohexane (HCH) isomers, that is, alpha, beta, gamma, and delta as muck. These have been used as Technical HCH in developing countries as an inexpensive alternate source. However, HCH isomers pose a severe environmental hazard due to their highly persistent nature and toxicity. In this study, the effect of HCH application on the soil microbial diversity was studied. The species which could persist even after prolonged exposure at high HCH concentration, was isolated, screened, and enriched as potential t-HCH degraders. The selected isolate could degrade 88.05%, 92.19%, 91.54%, and 82.85% of the alpha, gamma, beta, and delta isomers, respectively at 100 mg/L HCH concentration. Identification of the isolate by 16s rRNA sequencing was similar to Cupriavidus malaysiensis. To the best of the authors' knowledge, this is the first study to observe this particular strain's ability to simultaneously degrade the four isomers, especially the most recalcitrant beta isomer. Therefore, the degradative capability of this strain, as a sole carbon source at higher HCH concentration (100 mg/l), can be exploited for bioremediation of HCH contaminated sites.


Cupriavidus , Hexachlorocyclohexane , Biodegradation, Environmental , Cupriavidus/genetics , Cupriavidus/metabolism , Hexachlorocyclohexane/metabolism , RNA, Ribosomal, 16S/genetics , Soil
16.
J Hazard Mater ; 434: 128935, 2022 07 15.
Article En | MEDLINE | ID: mdl-35461001

Bacterial adaption to heavy metal stress is a complex and comprehensive process of multi-response regulation. However, the mechanism is largely unexplored. In this study, cadmium (Cd) resistance and adaptation mechanism in Cupriavidus nantongensis X1T were investigated. Strain X1T could resist the stress of 307 mg/L Cd2+ and remove 70% Cd2+ in 48 h. Spectroscopic analyses suggested interactions between Cd2+ with C-N, -COOH, and -NH ligands of extracellular polymeric substances. Whole-genome sequencing found that the resistance of Cd2+ in strain X1T was caused by the joint action of Czc and Cad systems. Cd2+ at 20 mg/L elicited differential expression of 1157 genes in strain X1T. In addition to the reported effects of uptake, adsorption, effluxion, and accumulation system, the oxidative stress system, Type-VI secretory protein system, Fe-S protein synthesis, and cysteine synthesis system in strain X1T were involved in the Cd2+ resistance and accumulation. The intracellular accumulation content of Cd2+ in strain X1T was higher than the extracellular adsorption content made strain X1T to be an important resource strain in the bioremediation of Cd-contaminated sewage. The results provide a theoretical network for understanding the complex regulatory system of bacterial resistance and adaptation of Cd against stressful environments.


Cupriavidus , Metals, Heavy , Biodegradation, Environmental , Cadmium/metabolism , Cadmium/toxicity , Cupriavidus/genetics , Cupriavidus/metabolism , Metals, Heavy/metabolism
17.
Microbiol Spectr ; 10(2): e0012122, 2022 04 27.
Article En | MEDLINE | ID: mdl-35311568

The genome of the metal-resistant, hydrogen-oxidizing bacterium Cupriavidus metallidurans contains a large number of horizontally acquired plasmids and genomic islands that were integrated into its chromosome or chromid. For the C. metallidurans CH34 wild-type strain growing under nonchallenging conditions, 5,763 transcriptional starting sequences (TSSs) were determined. Using a custom-built motif discovery software based on hidden Markov models, patterns upstream of the TSSs were identified. The pattern TTGACA, -35.6 ± 1.6 bp upstream of the TSSs, in combination with a TATAAT sequence 15.8 ± 1.4 bp upstream occurred frequently, especially upstream of the TSSs for 48 housekeeping genes, and these were assigned to promoters used by RNA polymerase containing the main housekeeping sigma factor RpoD. From patterns upstream of the housekeeping genes, a score for RpoD-dependent promoters in C. metallidurans was derived and applied to all 5,763 TSSs. Among these, 2,572 TSSs could be associated with RpoD with high probability, 373 with low probability, and 2,818 with no probability. In a detailed analysis of horizontally acquired genes involved in metal resistance and not involved in this process, the TSSs responsible for the expression of these genes under nonchallenging conditions were assigned to RpoD- or non-RpoD-dependent promoters. RpoD-dependent promoters occurred frequently in horizontally acquired metal resistance and other determinants, which should allow their initial expression in a new host. However, other sigma factors and sense/antisense effects also contribute-maybe to mold in subsequent adaptation steps the assimilated gene into the regulatory network of the cell. IMPORTANCE In their natural environment, bacteria are constantly acquiring genes by horizontal gene transfer. To be of any benefit, these genes should be expressed. We show here that the main housekeeping sigma factor RpoD plays an important role in the expression of horizontally acquired genes in the metal-resistant hydrogen-oxidizing bacterium C. metallidurans. By conservation of the RpoD recognition consensus sequence, a newly arriving gene has a high probability to be expressed in the new host cell. In addition to integrons and genes travelling together with that for their sigma factor, conservation of the RpoD consensus sequence may be an important contributor to the overall evolutionary success of horizontal gene transfer in bacteria. Using C. metallidurans as an example, this publication sheds some light on the fate and function of horizontally acquired genes in bacteria.


Cupriavidus , Sigma Factor , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cupriavidus/genetics , Cupriavidus/metabolism , Hydrogen/metabolism , Metals/metabolism , Sigma Factor/metabolism
18.
Sci Rep ; 12(1): 2874, 2022 02 21.
Article En | MEDLINE | ID: mdl-35190591

Lignin is a heterogeneous aromatic polymer and major component of plant cell walls. The ß-O-4 alkyl aryl ether is the most abundant linkage within lignin. Given that lignin is effectively degraded on earth, as yet unknown ether bond-cleaving microorganisms could still exist in nature. In this study, we searched for microorganisms that transform 2-phenoxyacetophenone (2-PAP), a model compound for the ß-O-4 linkage in lignin, by monitoring ether bond cleavage. We first isolated microorganisms that grew on medium including humic acid (soil-derived organic compound) as a carbon source. The isolated microorganisms were subsequently subjected to colorimetric assay for 2-PAP ether bond-cleaving activity; cells of the isolated strains were incubated with 2-PAP, and strains producing phenol via ether bond cleavage were selected using phenol-sensitive Gibbs reagent. This screening procedure enabled the isolation of various 2-PAP-transforming microorganisms, including 7 bacteria (genera: Acinetobacter, Cupriavidus, Nocardioides, or Streptomyces) and 1 fungus (genus: Penicillium). To our knowledge, these are the first microorganisms demonstrated to cleave the ether bond of 2-PAP. One Gram-negative bacterium, Acinetobacter sp. TUS-SO1, was characterized in detail. HPLC and GC-MS analyses revealed that strain TUS-SO1 oxidatively and selectively cleaves the ether bond of 2-PAP to produce phenol and benzoate. These results indicate that the transformation mechanism differs from that involved in reductive ß-etherase, which has been well studied. Furthermore, strain TUS-SO1 efficiently transformed 2-PAP; glucose-grown TUS-SO1 cells converted 1 mM 2-PAP within only 12 h. These microorganisms might play important roles in the degradation of lignin-related compounds in nature.


Acetophenones/metabolism , Acinetobacter/metabolism , Cupriavidus/metabolism , Ether/metabolism , Lignin/metabolism , Nocardioides/metabolism , Penicillium/metabolism , Streptomyces/metabolism
19.
Appl Environ Microbiol ; 88(6): e0188021, 2022 03 22.
Article En | MEDLINE | ID: mdl-35108100

Tetrahydrofuran (THF) has been recognized as a water contaminant because of its human carcinogenicity, extensive use, and widespread distribution. Previously reported multicomponent monooxygenases (MOs) involved in THF degradation were highly conserved, and all of them were from Gram-positive bacteria. In this study, a novel THF-degrading gene cluster (dmpKLMNOP) encoding THF hydroxylase was identified on the chromosome of a newly isolated Gram-negative THF-degrading bacterium, Cupriavidus metallidurans ZM02, and functionally characterized. Transcriptome sequencing and RT-qPCR demonstrated that the expression of dmpKLMNOP was upregulated during the growth of strain ZM02 on THF or phenol. The deletion of oxygenase alpha or beta subunit or the reductase component disrupted the degradation of THF but did not affect the utilization of its hydroxylated product 2-hydroxytetrahydrofuran. Cupriavidus pinatubonensis JMP134 heterologously expressing dmpKLMNOP from strain ZM02 could grow on THF, indicating that the THF hydroxylase DmpZM02KLMNOP is responsible for the initial degradation of THF. Furthermore, the THF and phenol oxidation activities of crude enzyme extracts were detected, and the highest THF and phenol catalytic activities were 1.38 ± 0.24 µmol min-1 mg-1 and 1.77 ± 0.37 µmol min-1 mg-1, respectively, with the addition of NADPH and Fe2+. The characterization of THF hydroxylase associated with THF degradation enriches our understanding of THF-degrading gene diversity and provides a novel potential enzyme for the bioremediation of THF-containing pollutants. IMPORTANCE Multicomponent MOs catalyzing the initial hydroxylation of THF are vital rate-limiting enzymes in the THF degradation pathway. Previous studies of THF degradation gene clusters have focused on Gram-positive bacteria, and the molecular mechanism of THF degradation in Gram-negative bacteria has rarely been reported. In this study, a novel THF hydroxylase encoded by dmpKLMNOP in strain ZM02 was identified to be involved in both THF and phenol degradation. Our findings provide new insights into the THF-degrading gene cluster and enzymes in Gram-negative bacteria.


Cupriavidus , Mixed Function Oxygenases , Biodegradation, Environmental , Cupriavidus/genetics , Cupriavidus/metabolism , Furans/metabolism , Humans , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Oxygenases
20.
J Proteomics ; 251: 104426, 2022 01 16.
Article En | MEDLINE | ID: mdl-34781029

Phenol and ammonia in wastewater pose a serious threat to ecosystems and human health. However, the currently limited studies on single bacterium simultaneously removing phenol and nitrogen pollution have not fully elucidated the relevant metabolic mechanisms. The differences in proteomic profile after supplementing with phenol and ammonia for 6 and 24 h, respectively, were evaluated to explore the metabolic characteristics and adaptive mechanism of Cupriavidus oxalaticus T2 during the simultaneous removal process of phenol and nitrogen. Results revealed that a new potential phenol para-degradation pathway appeared in T2. Phenol induced changes in nitrogen metabolism, resulting in increased denitrification and decreased synthesis of glutamate from ammonia at 6 h. In addition, phenol exposure enhanced the expression of cytochrome oxidases with high oxygen affinity and increased ATP synthesis. The increase in chemotaxis and flagellar assembly was conducive to the uptake and utilization of phenol. The synthesis of lipoic acid and biotin was also promoted to resist phenol toxicity. Moreover, phenol triggered cellular stress response, thereby leading to the upregulation of anti-stress proteins, such as universal stress protein, iron­sulfur cluster protein, and chaperones. This study contributes to revealing the metabolic characteristics and adaptive mechanism of T2 during simultaneous nitrogen and phenol removal. SIGNIFICANCE: Phenol and ammonia often co-exist in wastewater, causing serious environmental problems. The information on the metabolic mechanism of simultaneously removing these two pollutants by bacteria is insufficient at present. Moreover, phenol is toxic to microbial and causes cells damage. Therefore, exploring the response mechanism of bacteria to phenol stress is conducive to understand their tolerance mechanism to aromatic compounds. In this study, the metabolic characteristics and adaptive mechanism of C. oxalaticus T2 during the simultaneous removal of phenol and nitrogen process were evaluated by comparing the proteome profiles at different stages. The results revealed the degradation pathways of phenol and nitrogen by strain T2. A variety of phenol response mechanisms were determined, including enhanced energy production, improved cell motility, increased the synthesis of lipoic acid and biotin, and combined action of multiple anti-stress proteins. This study is potentially useful to future phenol and nitrogen co-pollution bioremediation strategies and provides insight into the phenolic compound resistance mechanism in bacteria.


Cupriavidus , Phenol , Cupriavidus/metabolism , Ecosystem , Humans , Nitrogen/metabolism , Phenol/metabolism , Phenols , Proteomics , Wastewater
...